Seat No. : _	- 10 - 17 1 -
--------------	---------------

NH-104

November-2023

BCA, Sem.-III

CC-201: Computer Organization and Advanced Micro-Processors (Old)

Tin	ne : 2½	Hours] [Max. Marks	: 70
1.	(A)	What is Flip-flop? List all flip-flops and explain any two in detail.	7
1.	(B)		7
0	(-)	OR	
1.	(A)	Draw the block diagram of digital computer and explain its working in detail.	7
1.	(B)	Draw and explain the working of an 8 × 3 line Encoder.	7
2.	(A)	Explain 1's and 2's complements in binary system with suitable examples.	7
2.	(B)	Draw a 4 bit adder circuit and explain its working with an example.	7
		OR	
2.	(A)	Solve: (i) $(59)_{10} = (\underline{}_{2})_{2}$ (ii) $(C4A)_{16} = (\underline{}_{8})_{8}$	7
2.		List the types of shift micro-operations and explain with an example.	7
3.	(A)	Explain various phases of an Instruction cycle in detail.	7
ď.	(B)	Explain the format of Memory-Reference Instruction in detail.	7
6		· OR	
3.	(A)	Draw and explain the use of all registers of 8086 Basic Computer.	7
3.	(B)	What is Direct and Indirect addressing mode of an instruction? Explain in deta	ail. 7
4.	(A)	List Peripheral devices used in Digital Computer and explain them in brief.	7
4.	(B)	Explain Direct mapping scheme of cache memory with its benefits limitations.	and 7
		OR	8
4.	(A)	Draw and explain the design of Daisy Chain priority interrupt.	7
4.		Write a note on Associative memory.	7
NH	-104	3	P.T.O.

5. MCQs: (Any 7 × 2 marks each)	
(i) Derforms at the	
(A) 4 bit Incrementer (B) Helf Adder	14
(C) Register	
(ii) Which flip-flop gives 0 as an output when both input bits are 1?	
(A) SR as an output when both input bits are 1?	
(iii) Multiplexer is device. (D) T	
(A) one to one device.	
(C) many to (B) one to many	
(iv) In a fixed point representation (D) None of the above	
(iv) In a fixed point representation, a binary point assumed at a left of a re (A) fraction (C) one to many (D) None of the above indicates the value is (A) fraction	
(C) Traction	gister
(B) integer	
(D) exponent	
(A) 11101111	
(C) 11111110 (B) 10101000	
(vi) Binary Incrementer increases the bit value by (C) 2 (B) 10101000 (B) 10101000 (D) 10001010	
(A) 0	45
(C) 2 (B) 1	
(vii) AC Register is known as (D) 10	4
Accumulator .	2
(C) Adder-Complementer (B) Accomodator (Viii) Instruction state	
None of the at	
Togister Reference I	
(C) 9 (B) 8 (ix) instruction.	
— Illstriction is	
(A) PUSH	
None of the above	(
1 mput	(
(C) Recording (B) Output	
(XI) Input-Output interface very (D) Input-Output	
(1) Data	
(C) Control (B) Address	
(xii) RAM chip uses (D) All of the above (A) Random (P) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
(A) Random access method for addresses	
(C) Serial (B) Sequential	
(D) Binary	