

GUJARAT UNIVERSITY BCA II SYLLABUS

COURSE TITLE	Discrete Mathematics
COURSE CODE	CC-111
COURSE CREDIT	3
Session Per Week	4
Total Teaching Hours	40 HOURS
A 1 A A	

AIM

The objective of this course is to present the foundations of many basic computer related concepts

and provide a coherent development to the students for the courses like fundamentals of Computer Organization, RDBMS, Data Structures, Analysis of Algorithms, Artificial Intelligence, Computer Graphics and others.

LEARNING OUTCOMES

On the completion of the course students will:

- 1. To become reasonably good at problem solving and algorithm development.
- 2. Students also enhance their ability to think logically and mathematically.

UNIT	TOPIC / SUB TOPIC	TEACHIN HOURS
1	Groups	10
	 Binary operations with properties Algebraic structure Semigroups and Monoids Definition of group and examples Order of a group and order of an element 	2
	 □ Abelian and cyclic group □ Groups < Zn, + n > & < Zp, *p > □ Sub-group 	4
	 Lagrange's Theorem (without proof) Permutation group 	4
	Relations and Ordering	10

	 Basic concept of binary relation Total no. of distinct relations Relation matrix and the graph of a relation 	2	
2	 Basic Property of binary relations in a set Equivalence relations and equivalence classes Covering and partition of a set Partial ordering and partially ordered set 	4	
	 Comparable elements , Chain Cover of an element, Hasse diagram Least, Greatest, Maximal, Minimal elements Lower and upper bounds of posets 	4	
	Lattices and Boolean Algebra	10	
3	 Introduction to lattice Lattices as partially ordered sets Some properties of lattices Sub-lattices 	2	
	 Types of lattices like complete, bounded, distributive and complemented lattice Definition and important properties of a Boolean algebra Boolean subalgebra 	4	
	 Isomorphic Boolean algebras (graphically) Boolean expressions and their equivalence Max/Min terms, canonical forms 	4	
	Graph theory	10	
4	 Basic concepts of Graph theory Paths, Reachability, and Connectedness Matrix representation of graphs Trees 	2	
	OOK/S:		
J.P. Tremblay and R. Manohar McGraw- Hill Publication			
REFERENCE BOOKS:			

Discrete Mathematics
 Publisher: Oxford University Press
 By Swapankumar Chakaborty, Bikas Kanti Sarkar
 Discrete Mathematics
 Publisher: Cengage Learning
 By D.S. Malik, M.K.Sen